Appendices and terminology

Appendices	148
Bearing standards	148
Gear teeth forces	149
Terminology	151
Vocabulary	151

SNR Appendices and terminology

Appendices

Bearing standards

Characteristics		Standards	
Terminology		IS0	5593
Dimensions	Ball and roller bearings (except tapered roller and thrust bearings)	ISO	15 355
	Self-aligning unit bearings	ISO	2264
	Thrust bearings	ISO	104
	Snap ring grooves	ISO	464
	Snap rings	ISO	464
	Eccentric locking collars	ISO	3145
	Tapered sleeves	150	113/1
	Nuts and lock-washers	150	2982
	Split pillow blocks	150	113/2
	Sen-angring bearing units	130	3220
	Corner radii	IS0	582
Precision	Definitions	IS0	1132
	All types of bearings	ISO	492
	Thrust bearings	ISO	199
Clearances	Radial internal clearance	ISO	5753
Basic dynamic load and bearing life		IS0	281/1
Basic static load (or basic static capacity)		ISO	76
Thermal refere	nce speed	ISO	15312

Gear tooth forces

T Tangential force

- C Transmitted torque
- Dp Tooth pitch diameter

T = 2C / Dp

- S Separation forces
- A Axial forces

Straight-tooth cylindrical gear

 α = pressure angle

S = T tg α

Helical-tooth cylindrical gear

α = pressure angle	S = T tg α / cos γ	
γ = helix angle	A = T tgγ	

Straight-tooth bevel gear

T = Tp = Tc

 α = pressure angle

$$S_p = -Ac = T tg\alpha \cos\theta$$

 θ = 1/2 angle at gear apex

 $A_p = - \operatorname{Sc} = \operatorname{T} tg\alpha \sin \theta$

SNR Appendices and terminology

Appendices (continued)

Helical-tooth bevel gear

T_c

Tc = Tp = 2 C / Dp

 α = pressure angle

- γp = helix angle of driving gear
- γ_{C} = helix angle of the driven gear

 $(\gamma p=\gamma_C$ for straight-tooth and helical-tooth bevel gear pairs)

 $\beta p = 1/2$ angle at apex of driving gear

 $\beta_{C} = 1/2$ angle at apex of driven gear

Direction of gear rotation:

(for an observer standing on the large base of the cone and looking at the apex)

- + counter-clockwise
- clockwise

Direction of the helix	Direction of gear rotation	Separation force	Axial force
right	-	$ \begin{array}{l} \mbox{Driving gear} (moving away from driven gear) \\ S_p = \frac{T_p}{\cos\gamma_p} \ (tg\alpha\cos\beta_p + sin\gamma_Psin\beta_p) \end{array} $	Driving gear (moving away from driven gear) $A_p = \frac{T_p}{\cos \gamma_p}, (tg\alpha \ sin\beta_p \ - \ sin\gamma_P \ cos\beta_p)$
left	r +	Driven gear (approaching driving gear) $S_c = \frac{T_c}{\cos \gamma_c}$. (tg $\alpha \cos \beta_c - \sin \gamma_c \sin \beta_c$)	Driven gear (approaching driving gear) $A_c = \frac{T_c}{\cos \gamma_c}$. (tg $\alpha \sin \beta_c + \sin \gamma_c \cos \beta_c$)
right	+ r	Driving gear (moving away from driven gear) $S_p = \frac{T_p}{\cos\gamma_p}. (tg\alpha \ \cos\beta_p \ - \ \sin\gamma_p \ \sin\beta_p)$	Driving gear (moving away from driven gear) $A_{p} = \frac{T_{p}}{\cos \gamma_{p}}.$ (tg $\alpha \sin \beta_{p} + \sin \gamma_{p} \cos \beta_{p}$)
left	-	$ \begin{array}{l} \mbox{Driven gear (approaching driving gear)} \\ S_c = \frac{T_c}{\cos\gamma_c} \ (tg\alpha\cos\beta_c + sin\gamma_csin\beta_c) \end{array} $	Driven gear (approaching driving gear) $A_{c} = \frac{T_{c}}{\cos \gamma_{c}}.$ (tg $\alpha \sin \beta_{c} - \sin \gamma_{c} \cos \beta_{c}$)

Terminology

Vocabulary

Symbol	Description	Unit
a	nominal angle of contact	0
α		
в	width of bearing inner ring	mm
C	width of bearing outer ring	mm
C	basic dynamic capacity of a bearing	N
C ₀	basic static capacity of a bearing	N
С _е	equivalent basic dynamic capacity of an assembly	N
C _{0e}	equivalent basic static capacity of an assembly	N
D	outside diameter of the bearing	mm
D _w	mean diameter of the rolling element	mm
d	bearing bore diameter	mm
fc	factor for calculating the basic dynamic load	
f _s	safety factor	
Fa	total axial load on the bearing	N
F _r	total radial load on the bearing	N
J _a	theoretical axial clearance	mm
J _r	operating radial clearance	mm
i	number of rows of rolling elements	
I	effective length of the contact generating surface	mm
L ₁₀	nominal service life	
N	speed of rotation	tr/mn
Р	equivalent dynamic radial load of the bearing	N
P ₀	equivalent static radial load of the bearing	N
т	nominal width of a tapered bearing	mm
х	radial factor of bearing	
Х _О	static radial factor	
Ŷ	axial factor of bearing	
Yn	static axial factor	
z	number of rolling elements	

